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more complex geological regions. 

1. Introduction 

Geological spatial distribution has complexity, fuzziness and uncertainty. To reasonably arrange urban engineering 

construction, the underground situation of each area of a city needs to be understood and a comprehensive assessment carried 25 

out. The establishment of a reasonable 3D geological model, intuitive expression of geological features, display of underground 

geological structures, and revelation of the spatial distribution law are important foundations to ensure engineering design and 

implementation. The stratum structure is the result of a long geological process, and its spatial and temporal distribution is 

uneven and irregular. At present, it is still difficult to summarize a set of reasonable mathematical laws to express the stratum 

distribution. Deep learning methods can obtain the complex mapping relationship between input and output by relying on the 30 

powerful computing power of computers, which has been applied in many complex fields and has increasingly attracted the 

attention of geological researchers, such as 3D modelling. 

At present, underground 3D data acquisition methods include borehole exploration technology and applied geophysical 

technology. Although the cost of borehole exploration is higher than that of geophysics, its exploration precision is high, 

making it the main means of high-precision exploration in local areas. Borehole data can intuitively and reliably obtain 35 

geological spatial information. 3D geological modelling from borehole data can be divided into explicit modelling and implicit 

modelling (Wang et al., 2018). Explicit modelling methods more easily add geological semantic constraints during modelling, 

the boundary control is more accurate, and the modelling results are more in line with the actual geological laws. However, it 
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a finer and more complex model and analysing the modelling results with uncertainty. In this paper, a semisupervised learning 

algorithm using pseudolabels for 3D geological modelling from borehole data is proposed. We establish a 3D geological model 

using borehole data from a complex real urban local survey area in Shenyang, and the modelling results are compared with 

implicit surface modelling and traditional machine learning modelling methods. Finally, an uncertainty analysis of the model 

20 is made. The results show that the method effectively expands the sample space, the modelling results perform well in terms 

of spatial morphology and geological semantics, and the proposed modelling method can achieve good modelling results for 
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is difficult to automatically model complex geological structures such as faults, folds and unconformities, and the modelling 

is not smooth. Examples include automatic modelling methods based on generalized tri-prism volume elements (Wu, L. X., 40 

2004), section connection methods (Yang et al., 2011), etc. Implicit modelling (Caumon et al., 2012; Hillier et al., 2014) solves 

the implicit equations of the space surface by selecting the appropriate basis functions and using known points in the space to 

obtain the implicit surface functions and then uses a 3D surface construction algorithm to express them explicitly. Because 

there is a certain relationship between the implicit surface shape and the selected basis function form, an implicit modelling 

method has a certain degree of subjectivity for the final model expression. In addition, implicit modelling requires a high data 45 

volume, which requires a large amount of borehole data to establish an accurate model, and solving large-scale equations also 

requires high hardware requirements. Examples include the kriging method (Che et al., 2019), inverse distance weighting 

method (Liu et al., 2020), Hermite radial basis function method (Guo et al., 2021), etc. Stochastic simulation methods include 

transition probability-based (Carle and Fogg, 1997), object-based (Lantuejoul, 2002), process-based (Lancaster and Bras, 

2002), truncated Gaussian (Matheron et al., 1987), multivariate Gaussian (Armstrong et al., 2011), implicit boundaries (Ferrer 50 

et al., 2021), and multipoint statistics (Mariethoz and Caers, 2014) simulations. At present, multipoint geostatistics (MPS) 

(Guo et al., 2022) has been developed as a method for boreholes. By establishing a grid and defining a random simulation path 

according to the simulation grid, the stratum attribute values are determined for the grid according to the borehole distribution 

of a random simulation path. 

Machine learning methods have been widely used in 3D geological modelling. Traditional machine learning methods 55 

include 3D geological modelling based on support vector machines (SVMs) (Smirnoff et al., 2008; Wang et al., 2014), using 

the kriging model-based potential field method to implicitly model geological structures (Calcagno et al. ,2008; Goncalves et 

al., 2017), using Bayesian methods to estimate the uncertainty of geological models, etc. (de la Varga et al., 2016; Wang, H., 

2020). These methods are applied to nonimage data. 

Compared with traditional machine learning methods, deep learning improves the ability to read mined data and is often 60 

combined with complex geophysical and geochemical data for modelling. For example, neural networks are trained to predict 

geological structures from seismic data (Titos et al., 2018), deep neural networks are used to invert complex binary geological 

media (Laloy et al., 2017) and generative adversarial networks are used to generate geological models (Zhang et al., 2019). 

Deep learning is used to comprehensively utilize geological, gravity, and aeromagnetic data to intelligently generate regional 

3D geological models, which solves the problem of a long 3D modelling cycle and slow effect (Ran et al., 2020). By designing 65 

a targeted U-Net convolutional neural network model, the automatic identification and classification of underground ore 

minerals based on a deep learning algorithm has been realized (Xu and Zhou., 2018). By designing a geological entity 

recognition model based on a deep belief network, the problem of structured and standardized processing of geological entity 

information in text data was solved (Zhang et al., 2018). When performing seismic inversion on different data sets, deep 

learning methods have the potential to obtain higher resolution results than traditional machine learning in the case of big data 70 

(Huang et al., 2020). 

Borehole data are common data in geological exploration, and the data are generally sparse. Research has been conducted 

in the field of geology using machine learning methods from borehole data, which can be divided into those based on spatial 

data from boreholes and other data from boreholes. There are mainly two kinds of modelling ideas based on borehole spatial 

data: borehole sequence simulation and borehole spatial point simulation. Borehole sequence simulation is divided into 75 

borehole sequence prediction and the prediction of each stratum thickness (Zhou et al., 2019). Borehole spatial point simulation 

simulates the lithology of the spatial points sampled by the borehole. This method is compared with the borehole sequence 

simulation method. The borehole sequence simulation method has better continuity in the vertical direction and is not affected 

by the sampling accuracy, while the lithology simulation of a borehole has higher accuracy in predicting the borehole lithology 

(Zhang et al., 2021). Models based on borehole spatial point simulation have different advantages and disadvantages due to 80 

the different input and sampling methods of the model. The borehole is upsampled according to a certain interval, and each 
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sampling point is used as input (Guo et al., 2019). Strata are generated by randomly selecting B-spline curve functions based 

on boreholes, and the voxels of each stratum are used as input (Wang et al 2021). The constructed model is more accurate, but 

the model mainly relies on randomly selected B-spline curves. If the coordinates and starting depth of each stratum drilled are 

used as input (Kim et al., 2022), although the model accuracy is lower than that of upsampling, it is not easy to overthrow the 85 

order of strata. Studies based on other borehole data include lithology classification based on borehole core description data 

(Bressan et al., 2020) and 3D geological modelling based on described boreholes (Fuentes et al., 2020). In conclusion, among 

borehole data modelling methods, the lithology prediction method for spatial points is better, but there are still some problems, 

such as needing 3D geological models established by other methods as references, low modelling accuracy, and difficulty in 

modelling complex geological phenomena. 90 

In this paper, we propose a semisupervised deep learning algorithm using pseudolabels from borehole data for urban 

engineering 3D geological modelling. Then, the trained model is used to predict the unlabelled grids, and the pseudolabel data 

with high confidence are added to the unlabelled grids to expand the sample data space. Finally, a final model is obtained by 

training the labelled data and the pseudolabel data. This method only uses borehole data and can establish a more accurate and 

complex 3D geological model. We establish a 3D geological model for a complex real geological project, compare it with the 95 

implicit HRBF method and SVM method, and analyse the uncertainty of the model. 

2. 3D Modelling Method Based on Deep Learning 

2.1. Borehole data preprocessing 

In deep learning, the problem of classifying borehole data can be further reduced to a problem of classifying strata. We can 

take the coordinates of a borehole and the borehole depth as the input vector and the stratum attribute of the borehole as the 100 

output vector. For 3D geological modelling, the model at the borehole should be as consistent as possible with the stratum 

information revealed by the current borehole. The original borehole data include the borehole coordinates X, Y, borehole 

elevation, stratum thickness, stratum bottom depth, borehole label, borehole stratum label, etc. To increase the amount of data, 

the borehole data are upsampled. Since the thicknesses of the strata may differ greatly from each other, the data balance will 

be affected if an equal interval sampling method is used, and the data amount of a thick stratum will be much greater than that 105 

of a thin stratum. As a result, the thick strata will dominate the training network, resulting in the classification of unknown 

regions. The unknown area will be easier to predict as the stratum thickness attribute. The greater the difference in stratum 

thickness is, the more misclassification will occur. 

Based on the above discussion, an unequal interval sampling method is adopted in this paper. Compared with equal 

interval sampling, unequal interval sampling changes the sampling interval according to the thickness of each stratum to ensure 110 

sampling data balance. At the same time, in the interior of each stratum, equal interval sampling is maintained, and the critical 

point attributes are preserved. Otherwise, the thinner strata may be difficult to predict or be considered as outliers due to too 

little sampling. The formula for unequal interval sampling can be expressed as follows: 

Zij =
(Sij−Sij−1)

n
                                                                                      (1) 

where Sij is the bottom depth of the jth stratum in the ith borehole, Hij is the thickness of the jth stratum in the ith borehole, n 115 

is the number of samples in each stratum, and Zij is the sampling interval of the jth stratum in the ith borehole. 

In the borehole stratigraphic data (Fig. 1), different colours indicate different stratigraphic attributes, and the stratigraphic 

data are displayed in strips, distributed continuously in the vertical direction, with continuous and unique stratigraphic 
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attributes for depth intervals of individual strata and no data gaps between strata. The unequally spaced sampling on the 

deterministic section is same as the unequally spaced sampling on the borehole, and unequally spaced sampling is also 120 

performed in the horizontal direction. 

 

Figure 1. Resampling of borehole data. Upsampling on the boreholes (left); upsampling on the deterministic sections (right). 

Borehole data play a direct or indirect role in the generation of the model, and some geological semantic information with 

high reliability in geology can be obtained through drilling. The borehole data points are inserted point by point according to 125 

the Delaunay rule to generate a surface triangular irregular network (TIN), and the basic topological relationship between 

boreholes is established. Each triangulation consists of three boreholes, and pairs of boreholes with the same attributes are 

connected to form a deterministic section. At the same time, long and narrow triangles in the TIN are removed to avoid the 

connection between the long and narrow triangles that are far away and not related to each other. In this way, the distance 

between boreholes generated by the Delaunay rule is small. This GTP-like section connection method can maintain the internal 130 

connection between the three boreholes and can simulate a variety of complex geological phenomena. At the same time, the 

modelling scope of this study is mainly for a quaternary sedimentary surface, the possibility of a large stratum inversion 

phenomenon is low, and the strata are deposited in chronological order. After connecting the deterministic sections, they are 

sampled at unequal intervals in the both horizontal and vertical directions so that the sampling density is consistent with the 

borehole to avoid oversampling affecting the training of the network. 135 

In the borehole data, the order of magnitude between the coordinates and the depth of each stratum is large. This will 

affect the results of model training, and to eliminate the dimensional influence between the indicators, data normalization is 

needed to solve the comparability between the data indicators. After the original data are standardized, each index is on the 
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same order of magnitude, which is suitable for comprehensive comparative evaluation. To ensure convergence, the data need 

to be normalized by mapping the resulting values to [0-1]. For any data x, the mapping function is as follows: 140 

x′ =
x−xmin

xmax−xmin
                                                                                      (7) 

where xmax is the maximum value of the sample data and xmin is the minimum value of the sample data. x' is the normalized 

result, and x is the input of the model data. Through the normalization method, the convergence speed of the network training 

model will be improved, the training accuracy will also be improved, and the model will be easier to train. 

2.2. Construction of deep neural networks 145 

A single-layer perceptron is one of the simplest feedforward neural networks (Huang et al., 2012), which can be used to 

simulate partial logic functions and solve linearly separable problems. It cannot classify data sets that are not linearly separable. 

A multilayer perceptron, by adding N hidden layers between the input layer and the output layer, enhances the model's ability 

to solve a problem. Multilayer perceptrons have strong robustness, memory ability, and nonlinear fitting ability, can map 

complex nonlinear relationships, can deal with a large number of data samples, and have simple learning rules that are easy to 150 

implement using computers. 

A deep neural network uses the input index and output index to form rules and provides the result closest to the expected 

output value from the input value, which is a multilayer feedforward neural network according to the error backpropagation 

algorithm. In a deep neural network, the unit output of the first hidden layer is first calculated, and then the output of the unit 

in the next layer is used to continue to calculate the output of the unit in the next layer until the output layer outputs the result; 155 

this process is called forwards propagation. There is a weight between a deep neural network layer and each layer unit, the 

initial value of the weight is preset, and the weight of the multilayer perceptron can be trained using the back propagation 

algorithm. The data in the data set are output after the multilayer perceptron, and the output is compared with the expected 

value to obtain the corresponding error. The error is backpropagated layer by layer, and the weight of each layer is adjusted 

accordingly. After a number of adjustments, with the result is a weight that fits the model. The relationship between layers can 160 

be expressed as follows: 

Yj = ∑ WijXi + bn
i=1                                                                                    (3) 

where Yj is the input of the next layer, Wij is the connection weight from cell Xi of the previous layer to cell Yj of the next 

layer, and b denotes the offset value. 

In the network model (Fig. 2), the coordinate data x, y, z of each upsampled spatial point in the prediction area are taken 165 

as the input, and the stratum attribute of the spatial point is the output. Each input represents a dimensional spatial feature, and 

after four fully connected layers, the result of the dimension expansion is obtained by multiplying the weight matrix. It is 

considered that the result represents the deep characteristics of the sample, and samples of different categories should have 

different high-dimensional features. Through a fully connected layer and softmax layer, the output value of the category is 
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normalized to the probability of each class after an exponential function change, and the sum of each class is 1. Finally, the 170 

predicted results of each data point are integrated to form the entire 3D geological model. 

 

Figure 2. Architecture of a deep neural network. Light grey nodes are input features, dark grey nodes are target outputs, and white 

nodes are internal network nodes. 

2.3 Semisupervised deep learning algorithm using pseudolabels 175 

Compared with images, point cloud data, etc., borehole data tend to be dispersed. Therefore, borehole data can be 

approximately regarded as a large number of missing point data between points, which makes it difficult to accurately express 

the variation characteristics, such as the inclination angle of the entire stratum interface. Deep learning requires a large amount 

of labelled data to improve model performance. Only by upsampling the borehole point data and deterministic borehole section 

data, for the spatial raster points with high modelling accuracy, the data amount is very small and contains very limited features. 180 

To effectively solve the labelling problem, semisupervised learning and deep learning are combined, and a small amount of 

labelled data and a large amount of unlabelled grids are used to build a model, which is conducive to expanding the sample 

space and making up for the lack of geological semantic information provided by single borehole data. 
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In the geological field, there is no specific mathematical law for the attribute of strata. The borehole vertex data points 

from the Delaunay rule of the generated surface are irregular triangle net topological relationships of three boreholes, according 185 

to the borehole stratum attribute, they are connected into triangular prisms ，then it is considered that the data points in this 

range have the highest confidence in the stratum attributes determined by the triangular prisms. On this basis, a semisupervised 

method using pseudolabels is used to enhance learning by generating pseudolabels for unlabelled grids. First, the model is 

trained using the labelled data, and when the model reaches a high accuracy after a certain number of training rounds, the 

trained model is used to predict the unlabelled grids, and the prediction result with higher confidence is selected as the 190 

pseudolabel. The pseudolabel data and label data are combined for training. After a certain round of training, the above process 

is repeated until the new pseudolabel data in each round are less than a certain proportion. At this point, it is considered that 

most of the grids with high confidence have been labelled, and the model has been trained on the data after data augmentation. 

 

Figure 3. Algorithm flow chart. 195 

2.4. Analysis of model uncertainty 

The last layer of the neural network classifier normalizes the probability of the output through the softmax layer, and the 

softmax normalized result can be approximated as the probability corresponding to each stratum at that data point. Therefore, 

when analysing the uncertainty of each data point of the raster model, the normalized information entropy can be introduced 

to quantitatively evaluate the uncertainty of the geological model. The normalized information entropy formula is as follows: 200 

H(X) = −
∑ p(x)ln(p(x))⁡x∈S

Smax
                                                                 (4) 

where S is the number of possible geological attributes for each data point, Smax is equal to ln(n), and n is the number of 

possible geological attributes. The information entropy of each data point is obtained by calculating the probability p(x) of 

each data point over all geological attributes. The magnitude of information entropy reflects the degree of complexity at a 

certain location in the geological model. The closer the information entropy is to 0, the higher the certainty of a data point for 205 

https://doi.org/10.5194/gmd-2023-11
Preprint. Discussion started: 20 April 2023
c© Author(s) 2023. CC BY 4.0 License.



8 

 

a certain stratum attribute, and the closer the information entropy is to 1, the higher the uncertainty of a data point for multiple 

geological attributes. 

In addition, the data can be analysed based on an estimated confusion index (Burrough et al., 1997), and the ambiguity of 

classification can be evaluated by selecting the results of the two prediction categories with the highest probability for each 

data point. The confusion index formula is as follows: 210 

CI = [1 − (μmax − μmax−1)]                                                                   (5) 

where μmax is the class with the highest predicted probability and μmax-1 is the class with the second highest predicted 

probability. CI values range from 0-1 to indicate the degree of confusion predicted by the data point, with 0 indicating that the 

classification result with a low confusion index is not ambiguous and 1 indicating that the classification result with a high 

confusion index is highly ambiguous. 215 

3. Experimental method and verification 

To further illustrate the applicability of the proposed method, this chapter uses a practical geological case to conduct 3D 

geological modelling and analysis with the proposed method. To verify the rationality of the model, the neural network model 

is compared with a mature implicit modelling method (HRBF). To illustrate the improvement of the modelling effect of the 

proposed method compared with the traditional 3D modelling method based on machine learning and the relative reliability 220 

of the modelling method in geological semantics, the same section of the 3D geological model established using the proposed 

method and the SVM method is compared. The proposed algorithm is implemented based on the PyTorch open source machine 

learning library. The SVM algorithm uses the RBF convolution kernel, the parameters are determined by grid search, and the 

SVM method in the ThunderSvm library is used for training (Wen et al., 2018). The model established using the algorithm 

mentioned in the experiment is visualized with the developed visualization platform. All test experiments in this chapter are 225 

performed on the same device with the following parameters: Intel(R) Core(TM) i7-10750H CPU @2.60 GHz, NVIDIA 

GeForce RTX 2060, 16.0 GB RAM, Windows 10 (64-bit). 

3.1. Overview of the study area 

The study area is located in a region of Shenyang District, Liaoning Province, China, which is located in the middle of the 

Liaohe Plain, Liaoning Province. The region is mainly plains, mountains, and hills concentrated in the northeast, and the terrain 230 

slopes gradually from northeast to southwest. There are four large rivers running through it. This region has a temperate 

monsoon continental climate and four distinct seasons. The average annual temperature is 8°C, the average precipitation is 

628 mm, increasing from north to south, and the precipitation is concentrated in summer. 
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3.2. Modelling results and accuracy verification 

The area includes data from 167 boreholes distributed over an area of 305 m×264 m, with adjacent boreholes spaced 235 

approximately 23 m apart, an average depth of 29.5 m and a minimum thickness of 0.4 m revealed by the boreholes. The ReLU 

function is used as the activation function in the neural network, the initial learning rate is set to 0.001, and the batch size for 

training is set to 512. When the model training accuracy reaches 90% and 500 epochs, the unlabelled grids are labelled with a 

pseudolabel every 100 epochs. When the newly added pseudolabel data are less than 10% of the unlabelled grids evaluated in 

an epoch, the model continues to train for a total of 2000 epochs before stopping. 240 

The training accuracy and losses in the method process are shown in Fig. 4. In the training process, when the labelled 

data and pseudolabel data are fused, the boundary demarcation of stratigraphic categories is more finely delineated, the final 

model training accuracy is above 95%, the loss function is poor, and the precision of the model on the test set is 98.16%. A 

confusion matrix is obtained from the test set (Fig. 5), which reflects the evaluation result reliability of the model. The 

classification accuracy of the model is high for all layers. Some strata are more likely to be confused due to thin strata, similar 245 

boundaries with other strata, or more geological phenomena, such as depositional termination. The receiver operating 

characteristic curve (ROC) is another performance indicator that summarizes the performance of the binary classification 

model in the positive class and thus evaluates the diagnostic ability of the classifier according to the threshold change (Fawcett, 

2006). The area under the ROC curve (AUC) (Fig. 6) represents a comprehensive measure of all possible classification 

thresholds. AUC values greater than 90, 75-90%, 50-75% and less than 50% are considered to represent excellent, good, poor 250 

and unacceptable performance, respectively (Ray et al., 2010). The AUC values of the model are all above 90%, indicating 

that the classification performance of the model is excellent. 

 

Figure 4. Model training accuracy and loss variation curve. 

https://doi.org/10.5194/gmd-2023-11
Preprint. Discussion started: 20 April 2023
c© Author(s) 2023. CC BY 4.0 License.



10 

 

 255 

Figure 5. Confusion matrix of classification results when the model is applied to the test data set. 

 

Figure 6. ROC curve for classification. 

The grid accuracy used in modelling is 1.5 m×1.3 m×0.3 m. The model uses the Tin mesh constructed from the top of 

boreholes to restrict the surface. The modelling range is determined according to the convex hull established by the boreholes, 260 

and the base of the model is determined according to the convex hull established by the bottom of boreholes. Fig. 7 shows the 

modelling results of the study area. The model reveals the coverage relationship between the strata and reproduces the contact 

relationship between the depositional termination and unconformity of the strata. 
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Figure 7. Model built using deep neural networks and model legend. 265 

To test the estimation accuracy of nonborehole positions using the proposed method, the borehole data are divided into a 

training set and a test set through k-fold cross validation, the training set borehole data is learned, and the test set accuracy is 

compared and analysed, where K is set to 10. 

 

Figure 8. Borehole distribution and experimental analysis of the section line path. The red dotted line is the section route, and the 270 

red circled borehole points correspond to the boreholes tested using K1 in the section. 

The boreholes in the test set were sampled at equal intervals to determine the data point attributes at the boreholes, and 

the average accuracy of the k-fold cross validation was calculated to be 71.65%. As there is a certain distance between the 
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boreholes, eliminating an entire borehole will lead to a change in the geological semantic information of the area. When the 

geological semantic information contained in a borehole is high (Fig. 9), it will be difficult to predict the borehole through the 275 

surrounding boreholes, so it is inevitable to obtain poor prediction results when predicting the borehole. Therefore, among the 

boreholes in the k-fold cross validation, the boreholes that have no more than three depositional terminations between any 

stratum and the surrounding boreholes and are not at the unconformity boundary are selected for statistical analysis. Among 

them, the topological relationship of the surrounding boreholes is established using the surface irregular triangulation generated 

by the Delaunay rule, and the average accuracy is 85.9%. 280 

 

Figure 9. A situation in which too much depositional termination affects the prediction. A related borehole is a borehole that has a 

topological relationship with the predicted borehole. The red solid line frame is the stratum, which is difficult to predict due to the 

excessive occurrence of depositional termination. 

To further analyse the influence of accuracy on the model, the model with complete borehole data and the model with 285 

excluded sample K1 test borehole data were established, and the sections of the model through a test borehole were compared 

(Fig. 10). The results of straight cutting and cutting along the boreholes are shown. Most areas of the section at the borehole 

of the test set are consistent with the section established using a complete borehole. Since some test set boreholes are near the 

depositional termination, there is a certain difference between the model and the test boreholes, but the results are still close 

to the original model and reasonable. In summary, it can be considered that the modelling method has a strong prediction 290 

ability for the neighbouring part of boreholes and can reveal the distribution characteristics of the stratum. 
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Figure 10. Comparison of the modelling results of sample K1 with the complete drilling results. The dotted box shows the boreholes 

eliminated during the test. 

3.3. Comparative analysis of models 295 

To further verify the rationality of the model, the neural network model is compared with a mature implicit modelling method. 

The modelling method compared in this study is the implicit Hermite radial basis function (HRBF) 3D geological modelling 

method. This method uses the implicit Hermite radial basis function to simulate the stratum interface. Since the implicit model 

is a vector model, the vector model is transformed into a grid model with the same size as the minimum grid cell of the neural 

network model for comparison. The implicit model has a thicker base than the deep learning model. 300 

 

Figure 11. Comparison of the model section between the deep neural network method and the HRBF implicit method. 
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The deep learning model and the implicit model are visually consistent along the borehole section (Fig. 11) in terms of 

the thickness and extension angle of the strata. The implicit model constrains the stratum interface through the control points 

of each borehole and the implicit equation. The deep learning model calculates the labelled and pseudolabelled data loss, trains 305 

the neural network through backpropagation to obtain the stratigraphic interface, and predicts the stratum data points in the 

modelling area. Therefore, when there is a depositional termination or unconformity phenomenon, the deep learning model 

and the implicit model have certain differences in the depositional termination angle and the thickness change of the stratum. 

At this time, the shape of the implicit model is mainly determined by the control points determined by the boreholes. However, 

the machine learning model predicts using upsampled borehole and pseudolabel data with high confidence, which has certain 310 

uncertainty. 

To illustrate the improvement of the modelling effect of the proposed method compared with the traditional machine 

learning 3D modelling method and the relative reliability of the modelling method in geological semantics, previous articles 

have proven (Guo et al., 2019) that the SVM algorithm has the best modelling effect among traditional machine learning 3D 

geological modelling methods. Therefore, the section of the 3D geological model established using the proposed method and 315 

the SVM method is compared along the borehole section. The proposed algorithm is implemented based on the PyTorch open 

source machine learning library. The SVM algorithm uses the RBF convolution kernel, the parameters are determined by grid 

search, and the SVM method in the ThunderSvm library is used for training. 

 

Figure 12. Comparison of the model section between the deep neural network method and the SVM method. 320 

In the study area, the modelling results of the proposed method for complex geological conditions are significantly 

improved compared with those of the SVM method. By observing the consistency of the attributes of the boreholes and 

sedimentary strata in Fig. 12, it can be seen that the consistency of the proposed method is higher. In addition, when there is a 

phenomenon such as depositional termination or unconformity, the variation in thickness and dip angle at the depositional 

termination or unconformity of the strata modelled using the proposed method is more consistent with the geological semantics. 325 

However, the SVM modelling quality decreases significantly when depositional termination or unconformity occurs, and there 
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are many prediction errors or stratum mutation problems. From the model section comparison, it can be concluded that the 

proposed method has significantly improved model morphology compared with the traditional machine learning method. 

3.4. Analysis of model uncertainty 

For each data point in the established model, the information entropy is calculated from the normalized probability distribution. 330 

Through 3D visualization of the information entropy model with close raster accuracy, the uncertainty of the constructed model 

can be quantitatively analysed, and the uncertainty of each position in the model can be clearly reflected. 

 

Figure 13. Models of uncertainty: (a) information entropy model based on semisupervised learning using pseudolabels; (b) confusion 

index model based on semisupervised learning using pseudolabels; (c) information entropy model based on supervised learning; and 335 

(d) confusion index model based on supervised learning. 

The model (Fig. 13) reflects the uncertainty of the semisupervised learning method using pseudolabels and the supervised 

learning method to build the model. The blue part of the information entropy model (Fig. 13a, c), where the information 

entropy is close to 0, means that the uncertainty of the stratum attribute values in the region is low, and the entropy value is 

small, mainly between the model stratum boundaries. The red part, where the information entropy is close to 1, indicates that 340 

the region has a large probability for other stratum attribute values, and the entropy value is large, mainly distributed near the 

stratum boundary obtained through training. In the confusion index model (Fig. 13b, d), the blue part indicates a low confusion 

index, and the red part indicates a high confusion index. The overall confusion index of the model is mostly low, and the 
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confusion index increases significantly at the stratum boundary. By comparing the distribution proportions of the two 

uncertainty models established using the two learning strategies (Fig. 14 and Fig. 15), the model based on the semisupervised 345 

learning method using pseudolabels has lower uncertainty than the model based on the supervised learning method, and the 

semisupervised learning method using pseudolabels can effectively improve the sample space and improve the stability of the 

model quality. 

From the model part, it can be observed that the information entropy and confusion index increase significantly at the 

boundary of the unconformity or complex depositional termination phenomenon strata, and the stratum boundary has great 350 

uncertainty. The uncertainty will increase obviously only when complex geological phenomena such as stratum interface or 

deposition termination occur, which indicates that the modelling results are stable and the modelling method is reliable. 

 

Figure 14. Comparison of the information entropy proportion distribution. 

 355 

Figure 15. Comparison of the confusion index proportion distribution. 

4. Discussion 

In this paper, we propose a semisupervised learning algorithm using pseudolabels for 3D geological modelling from borehole 

data. Because the borehole data sampling density is very sparse relative to the modelling range, it is difficult to obtain a 
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stratigraphic interface with high accuracy through supervised learning. However, the modelling area and modelling accuracy 360 

of 3D geological modelling are artificial settings, and the distribution of spatial points that need to be predicted and the 

distribution of boreholes often lack feature connections, so it is difficult to use unsupervised learning from borehole data. In 

this paper, the accuracy of the stratigraphic interface obtained through training is improved by adding pseudolabel data with 

high confidence to the unlabelled grids within the modelling scope. This paper also proves that the modelling method is 

effective and reliable and can reduce the uncertainty through the 3D geological modelling of the Shenyang complex geological 365 

area and the uncertainty analysis, and the modelling results are good and basically in accordance with the geological semantics. 

Compared with the MPS method, which builds a grid, defines a random simulation path based on the simulation grid, and 

determines the stratum attribute values for the grid based on the borehole distribution of a random simulation path, the proposed 

method trains each stratigraphic interface according to the borehole data and the pseudolabel data predicted between the 

boreholes and determines the attribute value according to the relationship between the predicted area and the stratigraphic 370 

interface. It is not difficult to see from the principle of the method that the MPS method pays more attention to the local 

borehole distribution, while the machine learning method pays more attention to the macroscopic borehole distribution. 

The limitation of the method in this paper is that unequal interval sampling is used, which prevents the problem of severe 

data imbalance leading to missing stratigraphy, but for thicker boreholes, the interval of borehole sampling increases, which 

leads to a loss of borehole information to some extent, so how to better reconstruct the borehole data is still a problem worth 375 

studying. 

Because the surface irregular triangulation network generated using Delaunay's rule is adopted in this paper to establish 

the topological relationship between three boreholes, the stratigraphic relationship is used to determine the pseudolabel 

confidence. When the depth of the borehole bottom fluctuates greatly, it is difficult to determine the pseudolabel confidence 

under a borehole with very shallow fluctuation, which leads to a decrease in local modelling accuracy. 380 

5. Conclusion 

In this study, we propose a semisupervised deep learning algorithm using pseudolabels for 3D geological modelling from 

borehole data. By predicting the pseudolabel for an unlabelled grid within the modelling scope, a 3D geological model is 

established by expanding the amount of sample data. The proposed method takes the engineering data of Shenyang City as an 

example to establish a 3D geological model. The accuracy of the deep neural network training model on the test set for 385 

sampling data points reaches 98.16%. When the test borehole data without missing geological semantics are predicted through 

cross-validation, the prediction accuracy of the borehole stratum can reach 85.9%. This shows that the established model 

conforms to the borehole distribution and has good prediction ability. Compared with the implicit HRBF modelling method 

and SVM modelling method, the modelling results can express the stratum distribution well, and the modelling results are 
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more accurate than those of the traditional machine learning method. The model uncertainty analysis shows that the 390 

pseudolabel method can slightly reduce the uncertainty of the model, which can improve the stability of the 3D geological 

model and has more advantages in dealing with more complex geological phenomena. 

Code availability. The program “GeoPDNN 1.0” was written using Python programming language. The program reads borehole data and 

preprocesses the borehole data with upsampling and normalization. By using DNN to train and predict the attributes of data points, 

pseudolabels with high confidence are added to the unlabelled grid points. The code is available for downloading from the following public 395 

repository: https://doi.org/10.5281/zenodo.7839508. 
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